Strategies for MCR image analysis of large hyperspectral data-sets
نویسندگان
چکیده
Polymer microarrays are a key enabling technology for high throughput materials discovery. In this study, multivariate image analysis, specifically multivariate curve resolution (MCR), is applied to the hyperspectral time of flight secondary ion mass spectroscopy (ToF-SIMS) data from eight individual microarray spots. Rather than analysing the data individually, the data-sets are collated and analysed as a single large data-set. Desktop computing is not a practical method for undertaking MCR analysis of such large data-sets due to the constraints of memory and computational overhead. Here, a distributed memory High-Performance Computing facility (HPC) is used. Similar to what is achieved using MCR analysis of individual samples, the results from this consolidated data-set allow clear identification of the substrate material; furthermore, specific chemistries common to different spots are also identified. The application of the HPC facility to the MCR analysis of ToF-SIMS hyperspectral data-sets demonstrates a potential methodology for the analysis of macro-scale data without compromising spatial resolution (data 'binning'). Copyright © 2012 John Wiley & Sons, Ltd.
منابع مشابه
Multivariate Curve Resolution for Hyperspectral Image Analysis: Applications to Microarray Technology*
Multivariate curve resolution (MCR) using constrained alternating least squares algorithms represents a powerful analysis capability for the quantitative analysis of hyperspectral image data. We will demonstrate the application of MCR using data from a new hyperspectral fluorescence imaging microarray scanner for monitoring gene expression in cells from thousands of genes on the array. The new ...
متن کاملImprovement of the Classification of Hyperspectral images by Applying a Novel Method for Estimating Reference Reflectance Spectra
Hyperspectral image containing high spectral information has a large number of narrow spectral bands over a continuous spectral range. This allows the identification and recognition of materials and objects based on the comparison of the spectral reflectance of each of them in different wavelengths. Hence, hyperspectral image in the generation of land cover maps can be very efficient. In the hy...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملComparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas
Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کامل